Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase.

نویسندگان

  • X Yang
  • S B Shears
چکیده

We describe a human cDNA encoding 1-kinase activity that inactivates Ins(3,4,5,6)P(4), an inhibitor of chloride-channel conductance that regulates epithelial salt and fluid secretion, as well as membrane excitability. Unexpectedly, we further discovered that this enzyme has alternative positional specificity (5/6-kinase activity) towards a different substrate, namely Ins(1,3,4)P(3). Kinetic data from a recombinant enzyme indicate that Ins(1,3,4)P(3) (K(m)=0.3 microM; V(max)=320 pmol/min per microg) and Ins(3,4,5,6)P(4) (K(m)=0.1 microM; V(max)=780 pmol/min per microg) actively compete for phosphorylation in vivo. This competition empowers the kinase with multitasking capability in several key aspects of inositol phosphate signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Ins(3,4,5,6)P4 Signaling by a Reversible Kinase/Phosphatase

Regulation of Cl(-) channel conductance by Ins(3,4,5,6)P(4) provides receptor-dependent control over salt and fluid secretion, cell volume homeostasis, and electrical excitability of neurones and smooth muscle. Ignorance of how Ins(3,4,5,6)P(4) is synthesized has long hindered our understanding of this signaling pathway. We now show Ins(3,4,5,6)P(4) synthesis by Ins(1,3,4,5,6)P(5) 1-phosphatase...

متن کامل

Metabolic relations of inositol 3,4,5,6-tetrakisphosphate revealed by cell permeabilization. Identification of inositol 3,4,5, 6-tetrakisphosphate 1-kinase and inositol 3,4,5,6-tetrakisphosphate phosphatase activities in mesophyll cells.

Using a permeabilization strategy to introduce Ins(3,4,5,6) P(4) into mesophyll protoplasts of Commelina communis, we have identified Ins(3,4,5,6) P(4) 1-kinase activity in mesophyll cells. Multiple InsP(3) isomers were identified in Spirodela polyrhiza and Arabidopsis. Only two of these, Ins(1,2,3) P(3) and Ins(3,4,6) P(3), have previously been identified in plants and only in monocots. The is...

متن کامل

The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene.

Reduced phytic acid content in seeds is a desired goal for genetic improvement in several crops. Low-phytic acid mutants have been used in genetic breeding, but it is not known what genes are responsible for the low-phytic acid phenotype. Using a reverse genetics approach, we found that the maize (Zea mays) low-phytic acid lpa2 mutant is caused by mutation in an inositol phosphate kinase gene. ...

متن کامل

Insulin and IGF-I inhibit calcium-dependent chloride secretion by T84 human colonic epithelial cells.

D-Myo-inositol (3,4,5,6) tetrakisphosphate [Ins(3,4,5,6)P(4)] or phosphatidylinositol 3-kinase (PI 3-kinase) activity acts to inhibit calcium-dependent chloride secretion in T84 colonic epithelial cells. To further distinguish between the contributions of these two signaling pathways to the inhibition of secretion, we studied effects of insulin, because the insulin receptor links to PI 3-kinase...

متن کامل

Inositol Phosphates: A Remarkably Versatile Enzyme

Ins(3,4,5,6)P(4) is an inhibitor of Ca(2+)-activated Cl(-) channels, but further understanding has been hindered by ignorance of how it is made in cells. It now transpires that one protein with ATP-dependent kinase and phosphatase activities interconverts Ins(3,4,5,6)P(4) and Ins(1,3,4,5,6)P(5), as well as several other inositol polyphosphates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 351 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2000